Биологическая химия - Березов Т. Т., Коровкин Б. Ф. 1998

Кровь
Буферные системы крови и кислотно-основное равновесие
Буферные системы крови

Установлено, что состоянию нормы соответствует определенный диапазон колебаний рН крови — от 7,37 до 7,44 со средней величиной 7,40**. Кровь представляет собой взвесь клеток в жидкой среде, поэтому ее кислотноосновное равновесие поддерживается совместным участием буферных систем плазмы и клеток крови. Важнейшими буферными системами крови являются бикарбонатная, фосфатная, белковая и наиболее мощная гемоглобиновая.

* Буферными свойствами, т.е. способностью противодействовать изменению рН при внесении в систему кислот или оснований, обладают смеси, состоящие из слабой кислоты и ее соли с сильным основанием или слабого основания с солью сильной кислоты.

** В других биологических жидкостях и в клетках рН может отличаться от рН крови. Например, в эритроцитах рН составляет 7,19 ± 0,02, отличаясь от рН крови на 0,2.

Бикарбонатная буферная система — мощная и, пожалуй, самая управляемая система внеклеточной жидкости и крови. На долю бикарбонатного буфера приходится около 10% всей буферной емкости крови. Бикарбонатная система* представляет собой сопряженную кислотно-основную пару, состоящую из молекулы угольной кислоты Н2СО3, выполняющую роль донора протона, и бикарбонат-иона НСО3-, выполняющего роль акцептора протона:

Для данной буферной системы величину рН в растворе можно выразить через константу диссоциации угольной кислоты (рКН2СО3) и логарифм концентрации недиссоциированных молекул Н2СО3 и ионов HCO3-:

Истинная концентрация недиссоциированных молекул Н2СО3 в крови незначительна** и находится в прямой зависимости от концентрации растворенного углекислого газа (СО2 + Н2О <=> Н2СО3). Поэтому удобнее пользоваться тем вариантом уравнения, в котором рКН2СО3 заменена «кажущейся» константой диссоциации Н2СО3, учитывающей общую концентрацию растворенного СО2 в крови:

где K1— «кажущаяся» константа диссоциации Н2СО3; [СО2(р)] — концентрация растворенного СО2.

При нормальном значении рН крови (7,4) концентрация ионов бикарбоната НСО3 в плазме крови превышает концентрацию СО2 примерно в 20 раз. Бикарбонатная буферная система функционирует как эффективный регулятор в области рН 7,4.

Механизм действия данной системы заключается в том, что при выделении в кровь относительно больших количеств кислых продуктов водородные ионы Н+ взаимодействуют с ионами бикарбоната НСО3-, что приводит к образованию слабодиссоциирующей угольной кислоты Н2СО3. Последующее снижение концентрации Н2СО3 достигается в результате ускоренного выделения СО2 через легкие в результате их гипервентиляции (напомним, что концентрация Н2СО3 в плазме крови определяется давлением СО2 в альвеолярной газовой смеси).

* Бикарбонаты во внеклеточной жидкости находятся в виде натриевой соли NaHCO3 и внутри клеток - калиевой соли КНСО3, имеющих общий анион НСО3-.

** Молярная концентрация Н2СО3 по сравнению с концентрацией СО2 в плазме крови очень низкая. При РСО2 = 53,3 гПа (40 мм рт. ст.) на 1 молекулу Н2СО3 приходится примерно 500 молекул СО2.

Если в крови увеличивается количество оснований, то они, взаимодействуя со слабой угольной кислотой, образуют ионы бикарбоната и воду. При этом не происходит сколько-нибудь заметных сдвигов в величине рН. Кроме того, для сохранения нормального соотношения между компонентами буферной системы в этом случае подключаются физиологические механизмы регуляции кислотно-основного равновесия: происходит задержка в плазме крови некоторого количества СО2 в результате гиповентиляции легких*. Как будет показано далее, данная буферная система тесно связана с гемоглобиновой системой.

Фосфатная буферная система представляет собой сопряженную кислотно-основную пару, состоящую из иона Н2РО4- (донор протонов) и иона НРО42- (акцептор протонов):

Роль кислоты в этой системе выполняет однозамещенный фосфат NaH2PO4, а роль соли двузамещенный фосфат — Na2HPO4.

Фосфатная буферная система составляет всего лишь 1% от буферной емкости крови. В других тканях эта система является одной из основных. Для фосфатной буферной системы справедливо следующее уравнение:

Во внеклеточной жидкости, в том числе в крови, соотношение [НРО42 ]: [Н2РО4] составляет 4:1. Величина рКН2РО4- равна 6,86.

Буферное действие фосфатной системы основано на возможности связывания водородных ионов ионами НРО42- с образованием Н2РО4-+ + НРО42- —> Н2РО4-), а также ионов ОН с ионами Н2РО4 (ОН+ + Н2РО4-—> HpO42- + H2O). Буферная пара (Н2РО4- —НРО42 ) способна оказывать влияние при изменениях рН в интервале от 6,1 до 7,7 и может обеспечивать определенную буферную емкость внутриклеточной жидкости, величина рН которой в пределах 6,9—7,4. В крови максимальная емкость фосфатного буфера проявляется вблизи значения рН 7,2. Фосфатный буфер в крови находится в тесном взаимодействии с бикарбонатной буферной системой. Органические фосфаты также обладают буферными свойствами, но мощность их слабее, чем неорганического фосфатного буфера.

Белковая буферная система имеет меньшее значение для поддержания КОР в плазме крови, чем другие буферные системы.

Белки образуют буферную систему благодаря наличию кислотно-основных групп в молекуле белков: белок — Н+ (кислота, донор протонов) и белок (сопряженное основание, акцептор протонов). Белковая буферная система плазмы крови эффективна в области значений рН 7,2—7,4.

Гемоглобиновая буферная система — самая мощная буферная система крови. Она в 9 раз мощнее бикарбонатного буфера; на ее долю приходится 75% от всей буферной емкости крови.

Участие гемоглобина в регуляции рН крови связано с его ролью в транспорте кислорода и углекислого газа. Константа диссоциации кислотных групп гемоглобина меняется в зависимости от его насыщения кислородом. При насыщении кислородом гемоглобин становится более сильной кислотой (ННbО2). Гемоглобин, отдавая кислород, превращается в очень слабую органическую кислоту (ННb).

* Следует заметить, что хотя дыхательная система (легкие) значительно влияет на кислотно-основное равновесие (КОР), однако легким требуется около 1-3 мин, чтобы нивелировать сдвиги его в крови, тогда как буферным системам для этого нужно всего лишь 30 с.

Итак, гемоглобиновая буферная система состоит из неионизированного гемоглобина ННb (слабая органическая кислота, донор протонов) и калиевой соли гемоглобина КНb (сопряженное основание, акцептор протонов). Точно так же может быть рассмотрена оксигемоглобиновая буферная система. Система гемоглобина и система оксигемоглобина являются взаимопревращающимися системами и существуют как единое целое. Буферные свойства гемоглобина прежде всего обусловлены возможностью взаимодействия кисло реагирующих соединений с калиевой солью гемоглобина с образованием эквивалентного количества соответствующей калийной соли кислоты и свободного гемоглобина:

КНb + Н2СO3 —> КНСO3 + ННb.

Именно таким образом превращение калийной соли гемоглобина эритроцитов в свободный ННЬ с образованием эквивалентного количества бикарбоната обеспечивает поддержание рН крови в пределах физиологически допустимых величин, несмотря на поступление в венозную кровь огромного количества углекислого газа и других кисло реагирующих продуктов обмена.

Гемоглобин (ННЬ), попадая в капилляры легких, превращается в оксигемоглобин (ННbО2), что приводит к некоторому подкислению крови, вытеснению части Н2СО3 из бикарбонатов и понижению щелочного резерва крови*. Перечисленные буферные системы крови играют важную роль в регуляции кислотно-основного равновесия. Как отмечалось, в этом процессе, помимо буферных систем крови, активное участие принимают также система дыхания и мочевыделительная система.



Для любых предложений по сайту: [email protected]