Биологическая химия - Березов Т. Т., Коровкин Б. Ф. 1998

Витамины
Витамины, растворимые в воде
Фолиевая кислота

Фолиевая (птероилглутаминовая) кислота (фолацин) в зависимости от вида животных или штамма бактерий, нуждающихся для нормального роста в присутствии этого пищевого фактора, называлась по-разному: фактор роста L. casei; витамин М, необходимый для нормального кроветворения у обезьян; витамин Вс, фактор роста цыплят (индекс «с» от англ. chicken - цыпленок). В 1941 г. фолиевая кислота была выделена из зеленых листьев растений, в связи с чем и получила свое окончательное название (от лат. folium - лист). Еще до установления химического строения фолиевой кислоты было показано, что для роста некоторых бактерий необходимо присутствие в питательной среде парааминобензойной кислоты. Добавление структурных аналогов ее, в частности сульфаниламидных препаратов, наоборот, оказывало тормозящее действие на рост бактерий. В настоящее время установлено, что это ростстимулирующее действие парааминобензойной кислоты обусловлено включением ее в состав более сложно построенной молекулы фолиевой кислоты.

Фолиевая кислота состоит из трех структурных единиц: остатка 2- амино-4-окси-6-метилптеридина (I), парааминобензойной (II) и L-глутаминовой* (III) кислот и имеет следующую структуру:

Фолиевая кислота ограниченно растворима в воде, но хорошо растворима в разбавленных растворах спирта; имеет характерные спектры поглощения в УФ-области спектра. Недостаточность фолиевой кислоты трудно вызвать даже у животных без предварительного подавления в кишечнике роста микроорганизмов, которые синтезируют ее в необходимых количествах; авитаминоз обычно вызывают введением антибиотиков и скармливанием животным пищи, лишенной фолиевой кислоты. У обязьян фолиевая недостаточность сопровождается развитием специфической анемии; у крыс сначала развивается лейкопения, а затем анемия. У человека наблюдается клиническая картина макроцитарной анемии, очень похожая на проявления пернициозной анемии — следствия недостаточности витамина В12, хотя нарушения нервной системы отсутствуют. Иногда отмечается диарея. Имеются доказательства, что при недостаточности фолиевой кислоты нарушается процесс биосинтеза ДНК в клетках костного мозга, в которых в норме осуществляется эритропоэз. Как следствие этого в периферической крови появляются молодые клетки — мегалобласты — с относительно меньшим содержанием ДНК.

* У бактерий количество глутаминовой кислоты в молекуле витамина достигает 3-6 остатков, соединенных между собой у-глутамильными связями.

Биологическая роль. Коферментные функции фолиевой кислоты связаны не со свободной формой витамина, а с восстановленным его птеридиновым производным. Восстановление сводится к разрыву двух двойных связей и присоединению четырех водородных атомов в положениях 5, 6, 7 и 8 с образованием тетрагидрофолиевой кислоты (ТГФК). Оно протекает в 2 стадии в животных тканях при участии специфических ферментов, содержащих восстановленный НАДФ. Сначала при действии фолатредуктазы образуется дигидрофолиевая кислота (ДГФК), которая при участии второго фермента — дигидрофолатредуктазы — восстанавливается в ТГФК:

Доказано, что коферментные функции ТГФК непосредственно связаны с переносом одноуглеродных групп, первичными источниками которых в организме являются ß-углеродный атом серина, а-углеродный атом глицина, углерод метальных групп метионина, холина, 2-й углеродный атом индольного кольца триптофана, 2-й углеродный атом имидазольного кольца гистидина, а также формальдегид, муравьиная кислота и метанол. К настоящему времени открыто шесть одноуглеродных групп, включающихся в разнообразные биохимические превращения в составе ТГФК: формильная (—СНО), метильная (—СН3), метиленовая (—СН2—), метенильная (—СН=), оксиметильная (—СН2ОН) и формиминовая (—CH=NH). Выяснено, что присоединение этих фрагментов к ТГФК является ферментативной реакцией ковалентного связывания их с 5-м или 10-м атомом азота (или с обоими атомами вместе). В качестве примера приводим отдельные функциональные группы в активных участках ТГФК:

Имеются данные, что производные ТГФК участвуют в переносе одноуглеродных фрагментов при биосинтезе метионина и тимина (перенос метильной группы), серина (перенос оксиметильной группы), образовании пуриновых нуклеотидов (перенос формильной группы) и т.д. (см. главы 12 и 13). Перечисленные вещества играют исключительно важную, ключевую, роль в биосинтезе белков и нуклеиновых кислот, поэтому становятся понятными те глубокие нарушения обмена, которые наблюдаются при недостаточности фолиевой кислоты.

В медицинской практике (в частности, в онкологии) нашли применение некоторые синтетические аналоги (антагонисты) фолиевой кислоты. Так, 4-аминоптерин используется в качестве препарата, тормозящего синтез нуклеиновых кислот, и рекомендуется в качестве лечебного препарата при опухолевых поражениях, в частности при острых и хронических формах лейкозов у детей и взрослых.

Распространение в природе и суточная потребность. Вещества, обладающие активностью фолиевой кислоты, широко распространены в природе. Богатыми источниками их являются зеленые листья растений и дрожжи. Эти вещества содержатся также в печени, почках, мясе и других продуктах. Многие микроорганизмы кишечника животных и человека синтезируют фолиевую кислоту в количествах, достаточных для удовлетворения потребностей организма в этом витамине. Суточная потребность в свободной фолиевой кислоте для взрослого человека составляет 1-2 мг.



Для любых предложений по сайту: [email protected]