Учебник Биология - ВУНМЦ 2000
Глава 3. КЛЕТОЧНЫЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИВОГО
3.4. КЛЕТОЧНЫЙ ЦИКЛ
3.4.2. ДЕЛЕНИЕ КЛЕТКИ
3.4.2.3. Мейоз
Мейоз (от греч. meiosis - уменьшение) - процесс деления клеточного ядра с образованием четырех дочерних ядер, каждое из которых содержит вдвое меньше хромосом, чем исходное ядро. Мейоз - редукционное деление: происходит уменьшение числа хромосом в клетке с диплоидного (2n) до гаплоидного (n). Мейоз сопровождает образование гамет у животных и образование спор у растений. В результате мейоза получаются гаплоидные ядра, при слиянии которых во время оплодотворения восстанавливается диплоидный набор хромосом (рис. 65).
Рис. 65. Мейоз (схема). В результате мейоза возникают четыре гаметы с различающимися между собой гаплоидными наборами хромосом (Harnden, 1965).
Мейоз включает два последовательных деления. В каждом мейотическом делении выделяют четыре стадии: профазу, метафазу, анафазу и телофазу.
Первое мейотическое деление называют редукционным. В результате из одной клетки с диплоидным набором хромосом образуются две с гаплоидным набором.
Профаза I - профаза первого мейотического деления - самая продолжительная. Ее условно делят на пять стадий: лептотену, зиготену, пахитену, диплотену и диакинез.
Первая стадия - лептотена - характеризуется увеличением ядра. В ядре виден диплоидный набор хромосом. Хромосомы представляют собой длинные, тонкие нити. Каждая хромосома состоит из двух хроматид. Хроматиды имеют хромомерное строение. Начинается спирализация хромосом.
Во время второй стадии профазы 1-го мейотического деления - зиготене - происходит конъюгация гомологичных хромосом. Гомологичными называют хромосомы, имеющие одинаковую форму и размер: одна из них получена от матери, другая от отца. Гомологичные хромосомы притягиваются и прикладываются друг к другу по всей длине. Центромера одной из парных хромосом точно прилегает к центромере другой, и каждая хроматида прилегает к гомологичной хроматиде другой.
Третья стадия - пахитена - стадия толстых нитей. Конъюгирующие хромосомы тесно прилегают друг к другу. Такие сдвоенные хромосомы называют бивалентами. Каждый бивалент состоит из четверки (тетрады) хроматид. Число бивалентов равно гаплоидному набору хромосом. Происходит дальнейшая спирализация. Тесный контакт между хроматидами дает возможность обмениваться идентичными участками в гомологичных хромосомах. Это явление называется кроссинговер (англ. crossing over - перекрест).
Четвертая стадия - диплотена - характеризуется возникновением сил отталкивания. Хромосомы, составляющие биваленты, начинают отходить друг от друга. Расхождение начинается в области центромер. Хромосомы соединены между собой в нескольких точках. Эти точки называют хиазмами (от греч. chiasma - перекрест), т. е. местами, где произойдет кроссинговер. В каждой хиазме осуществляется обмен участками хроматид. Хромосомы спирализуются и укорачиваются.
Пятая стадия - диакинез - характеризуется максимальной спирализацией, укорочением и утолщением хромосом. Отталкивание хромосом продолжается, но они остаются соединенными в биваленты своими концами. Ядрышко и ядерная оболочка растворяются. Центриоли расходятся к полюсам.
Таким образом, в профазе 1-го мейотического деления происходят три основных процесса:
1) конъюгация гомологичных хромосом;
2) образование бивалентов хромосом или тетрад хроматид;
3) кроссинговер.
Метафаза I. В метафазе первого мейотического деления биваленты хромосом располагаются по экватору клетки, образуя метафазную пластинку. К ним прикрепляются нити веретена деления.
Анафаза I. В анафазе первого мейотического деления к полюсам клетки расходятся хромосомы, а не хроматиды. В дочерние клетки попадают только по одной из пары гомологичных хромосом.
Телофаза I. В телофазе первого мейотического деления число хромосом в каждой клетке становится гаплоидным. Хромосомы состоят из двух хроматид. Вследствие кроссинговера при образовании хиазм, хроматиды генетически не однородны. На короткое время образуется ядерная оболочка, хромосомы деспирализуются, ядро становится интерфазным. Затем у животной клетки начинается деление цитоплазмы, а у растительной клетки формирование клеточной стенки. У многих растений нет телофазы I, клеточная стенка не образуется, нет интерфазы II, клетки сразу переходят из анафазы I в профазу II.
Интерфаза II. Эта стадия есть только у животных клеток. Во время интерфазы между первым и вторым делением в S период не происходит редупликация молекул ДНК.
Второе мейотическое деление называют эквационным. Оно похоже на митоз. Из хромосом, имеющих две хроматиды, образуются хромосомы, состоящие из одной хроматиды.
Профаза II. В профазе второго мейотического деления хромосомы утолщаются и укорачиваются. Ядрышко и ядерная оболочка разрушаются. Образуется веретено деления.
Метафаза II. В метафазе второго мейотического деления хромосомы выстраиваются вдоль экватора. Нити ахроматинового веретена отходят к полюсам. Образуется метафазная пластинка.
Анафаза II. В анафазе второго мейотического деления центромеры делятся и тянут за собой к противоположным полюсам отделившиеся друг от друга хроматиды, называемые хромосомами.
Телофаза II. В телофазе второго мейотического деления хромосомы деспирализуются, становятся невидимыми. Нити веретена исчезают. Вокруг ядер формируется ядерная оболочка. Ядра содержат гаплоидный набор хромосом. Происходит деление цитоплазмы и образование клеточной стенки у растений. Из одной исходной клетки образуются четыре гаплоидных клетки.
3.4.2.3.1. Значение мейоза
1. Поддержание постоянства числа хромосом. Если бы не возникало редукции числа хромосом при гаметогенезе, и половые клетки имели гаплоидный набор хромосом, то из поколения в поколение возрастало бы их число.
2. При мейозе образуется большое число новых комбинаций негомологичных хромосом.
3. В процессе кроссинговера имеют место рекомбинации генетического материала.
Практически все хромосомы, попадающие в гаметы, содержат участки, происходящие как первоначально от отцовской, так и от материнской хромосомы. Этим достигается большая степень перекомбинации наследственного материала. В этом одна из причин изменчивости организмов, дающая материал для отбора.
3.4.2.3.2. Отличия митоза от мейоза
При митозе в профазе нет конъюгации гомологичных хромосом и кроссинговера (рис. 66).
Рис. 66. Сравнение мейоза с обычным митозом (схема). Для простоты показана только одна пара гомологичных хромосом. Спаривание гомологичных хромосом происходит только в мейозе, поскольку перед спариванием каждая хромосома удваивается и состоит из двух сестринских хроматид. Для образования гаплоидных гамет необходимы два клеточных деления. Поэтому из любой диплоидной клетки, вступающей в мейоз, образуются четыре гаплоидные клетки. В мейозе при конъюгации гомологичных хромосом между ними осуществляется кроссинговер.
Удвоение хромосом соответствует каждому делению клетки. В метафазе при митозе на экваторе выстраиваются хромосомы, состоящие из двух хроматид.
В анафазе при митозе к полюсам расходятся хроматиды. В телофазе дочерние клетки содержат то же число хромосом, что и материнские.
При мейозе в профазе I происходит конъюгация гомологичных хромосом, имеет место кроссинговер. Образуются биваленты хромосом.
В метафазе I при мейозе на экваторе располагаются биваленты хромосом.
При мейозе в анафазе I к полюсам расходятся хромосомы, состоящие из двух хроматид.
В телофазе I мейоза число хромосом в дочерних клетках вдвое меньше, чем в материнских.
Между I и II делениями мейоза в интерфазе нет синтеза ДНК. Мейоз осуществляется в диплоидных и полиплоидных клетках. В результате мейоза из одной клетки образуются четыре гаплоидных.
Мейоз у человека имеет место во время овогенеза и сперматогенеза.