БИОЛОГИЯ Том 3 - руководство по общей биологии - 2004
26. ЭВОЛЮЦИЯ, ИЛИ ИСТОРИЯ ЖИЗНИ НА ЗЕМЛЕ
26.1. Теории возникновения жизни
26.1.5. Биохимическая эволюция
Среди астрономов, геологов и биологов принято считать, что возраст Земли составляет примерно 4,5-5,0 млрд. лет.
По мнению многих биологов, в далеком прошлом состояние нашей планеты было мало похоже на нынешнее: по всей вероятности, температура ее поверхности была очень высокой (4000 —8000 °С), и по мере того как Земля остывала, углерод и сравнительно тугоплавкие металлы конденсировались и формировали земную кору; поверхность планеты была, вероятно, обнаженной и неровной, так как на ней в результате вулканической активности, непрерывных подвижек коры и сжатия, вызванного охлаждением, происходило образование складок и разрывов.
Полагают, что в те времена атмосфера была совершенно не такой, как теперь. Легкие газы — водород, гелий, азот, кислород и аргон — покидали атмосферу, поскольку гравитационное поле нашей планеты, еще недостаточно плотной, не могло их удержать. Однако простые соединения, содержащие, среди прочих, эти элементы, должны были удерживаться; к ним относились вода, аммиак, диоксид углерода и метан. До тех пор пока температура Земли не упала ниже 100 °С, вся вода, вероятно, находилась в парообразном состоянии. Атмосфера была, по-видимому, «восстановительной», о чем свидетельствует наличие в самых древних горных породах Земли металлов, таких как двухвалентное железо, в восстановленной форме. Более молодые горные породы содержат металлы в окисленной форме, например двухвалентное железо. Отсутствие в атмосфере кислорода было, вероятно, необходимым условием для возникновения жизни; лабораторные опыты показывают, что, как это ни парадоксально, органические вещества (основа живых организмов) гораздо легче образуются в восстановительной среде, чем в атмосфере, богатой кислородом.
В 1923 г. А. И. Опарин высказал мнение, что атмосфера первобытной Земли была не такой, как сейчас, а примерно соответствовала данному выше описанию. Исходя из теоретических соображений, он предположил, что органические вещества, возможно углеводороды, могли возникать в океане из более простых соединений; энергию для этих реакций синтеза, по-видимому, поставляла интенсивная солнечная радиация (главным образом ультрафиолет), падавшая на Землю до того, как образовался слой озона, который стал задерживать большую ее часть. По мнению Опарина, разнообразие находившихся в океанах простых соединений, площадь поверхности Земли, доступность энергии и масштабы времени позволяют предположить, что в океанах постепенно накапливались органические вещества и образовался тот «первичный бульон», в котором могла возникнуть жизнь. Эта идея была не нова — в 1871 г. сходную мысль высказал Дарвин:
«Часто говорят, что все необходимые для создания живого организма условия, которые могли когда-либо существовать, имеются и в настоящее время. Но если (ох, какое это большое «если») представить себе, что в каком-то небольшом теплом пруду, содержащем всевозможные аммонийные и фосфорные соли, при наличии света, тепла, электричества и т. п. образовался бы химическим путем белок, готовый претерпеть еще более сложные превращения, то в наши дни такой материал непрерывно пожирался бы или поглощался, чего не могло случиться до того, как появились живые существа».
В 1953 г. Стэнли Миллер в ряде экспериментов моделировал условия, предположительно существовавшие на первобытной Земле. В созданной им установке (рис. 26.1), снабженной источником энергии, ему удалось синтезировать многие вещества, имеющие важное биологическое значение, в том числе ряд аминокислот, аденин и простые сахара, такие как рибоза. Затем Орджел в Институте Солка в сходном эксперименте синтезировал нуклеотидные цепи длиной в шесть мономерных единиц (простые нуклеиновые кислоты).
Рис. 26.1. Установка Стэнли Миллера, в которой он синтезировал аминокислоты из газов, создав условия, предположительно существовавшие в атмосфере первобытной Земли. Газы и водяные пары, циркулировавшие в установке под высоким давлением, в течение недели подвергали воздействию высокого напряжения, после чего жидкие вещества, собранные в ловушке, исследовали методом хроматографии на бумаге. В общей сложности было выделено 15 аминокислот, в том числе глицин, аланин и аспарагиновая кислота.
Позднее было высказано предположение, что в первичной атмосфере в относительно высокой концентрации содержался диоксид углерода. Недавние эксперименты, проведенные с использованием установки Миллера, в которую поместили смесь СО2 и Н2О и только следовые количества других газов, дали такие же результаты, какие получил Миллер. Теория Опарина завоевала широкое признание, но она оставляет нерешенными проблемы, связанные с переходом от сложных органических веществ к простым живым организмам. Именно в этом аспекте теория биохимической эволюции предлагает общую схему, приемлемую для большинства современных биологов. Однако они не пришли к единому мнению о деталях этого процесса.
Опарин полагал, что решающая роль в превращении неживого в живое принадлежала белкам. Благодаря амфотерности белковых молекул они способны к образованию коллоидных гидрофильных комплексов, которые притягивают к себе молекулы воды, создающие вокруг них оболочку. Эти комплексы могут обособляться от всей массы воды, в которой они суспендированы (водной фазы), и образовывать своего рода эмульсию. Слияние таких комплексов друг с другом приводит к отделению коллоидов от водной среды — процесс, называемый коацервацией (от лат. coacervus — сгусток или куча). Богатые коллоидами коацерваты, возможно, были способны обмениваться веществами с окружающей средой и избирательно накапливать различные соединения, в особенности кристаллоиды. Коллоидный состав коацерватов, очевидно, зависел от состава среды. Различный состав «бульона» в разных местах обусловил появление разнообразных в химическом отношении коацерватов, что обеспечило сырьем «биохимический естественный отбор».
Предполагается, что вещества, входившие в состав коацерватов, вступали в дальнейшие химические реакции; при этом происходило поглощение коацерватами ионов металлов, в результате чего образовывались ферменты. На границе между коацерватами и внешней средой выстраивались молекулы липидов (сложные углеводороды), что приводило к образованию примитивной клеточной мембраны, обеспечивавшей коацерватам стабильность. В результате включения в коацерват предсуществующей молекулы, способной к самовоспроизведению, и внутренней перестройке покрытого липидной оболочкой коацервата могла возникнуть примитивная клетка. Увеличение размеров коацерватов и их фрагментация, возможно, вели к образованию идентичных коацерватов, которые были способны поглощать больше компонентов среды, так что этот процесс мог продолжаться. Такая предположительная последовательность событий должна была привести к возникновению примитивного самовоспроизводящегося гетеротрофного организма, питавшегося органическими веществами первичного бульона.