Молекулярная биотехнология. Принципы и применение - Глик Б., Пастернак Дж. 2002

Молекулярная биотехнология микробиологических систем
Трансгенные животные
Трансгенные мыши: методология

Трансгенные технологии разрабатывались и совершенствовались на лабораторных мышах. С начала 1980-х гг. в различные линии мышей были введены сотни генов. Эти исследования в значительной мере способствовали установлению механизмов генной регуляции и развития опухолей, природы иммунологической специфичности, молекулярной генетики роста и развития, других фундаментальных биологических процессов. Трансгенные мыши сыграли свою роль в исследовании возможности крупномасштабного синтеза лекарственных веществ, а также в создании трансгенных линий, позволяющих моделировать различные генетические болезни человека. Введение чужеродной ДНК мышам можно осуществить разными методами: 1) с помощью ретровирусных векторов, инфицирующих клетки эмбриона на ранних стадиях развития перед имплантацией эмбриона в самку-реципиента; 2) микроинъекцией в увеличенное ядро спермия (мужской пронуклеус) оплодотворенной яйцеклетки; 3) введением генетически модифицированных эмбриональных стволовых клеток в предимплантированный эмбрион на ранних стадиях развития. Использование ретровирусных векторов Преимущество метода, основанного на использовании ретровирусных векторов (рис. 19.1), перед другими методами трансгеноза состоит в его эффективности. Однако размер вставки в этом случае ограничивается 8 т. п. н., вследствие чего трансген может оказаться лишенным прилегающих регуляторных последовательностей, необходимых для его экспрессии.

Использование ретровирусных векторов имеет и еще один большой недостаток. Хотя эти векторы создаются так, чтобы они были дефектными по репликации, геном штамма ретровируса (вируса-помощника), который необходим для получения большого количества векторной ДНК, может попасть в то же ядро, что и трансген. Несмотря на все принимаемые меры, ретровирусы-помощники могут реплицироваться в организме трансгенного животного, что совершенно недопустимо, если этих животных предполагается использовать в пищу или как инструмент для получения коммерческого продукта. И поскольку существуют альтернативные методы трансгеноза, ретровирусные векторы редко используются для создания трансгенных животных, имеющих коммерческую ценность.

Рис. 19.1. Получение линии трансгенных мышей с использованием ретровирусных векторов. Эмбрион, обычно находящийся на стадии 8 клеток, инфицируют рекомбинантным ретровирусом, несущим трансген. Самки, которым был имплантирован эмбрион («суррогатные» матери), производят на свет трансгенное потомство. Для идентификации мышат, несущих трансген в клетках зародышевой линии, проводят ряд скрещиваний.

Метод микроинъекций ДНК

В настоящее время для создания трансгенных мышей чаще всего используют метод микроинъекций ДНК. Он заключается в следующем (рис. 19.2).

1. Увеличение числа яйцеклеток, в которых будет инъецирована чужеродная ДНК, путем стимуляции гиперовуляции у самок-доноров. Сначала самкам вводят сыворотку беременной кобылы, а спустя примерно 48 ч — хорионический гонадотропин человека. В результате гиперовуляции образуется примерно 35 яйцеклеток вместо обычных 5—10.

2. Скрещивание с самцами самок с гиперовуляцией и их умерщвление. Вымывание из яйцеводов оплодотворенных яйцеклеток.

3. Микроинъекция ДНК в оплодотворенные яйцеклетки — как правило, сразу после выделения. Часто вводимая трансгенная конструкция находится в линейной форме и не содержит прокариотических векторных последовательностей.

Рис. 19.2. Получение линий трансгенных мышей методом микроинъекций. Яйцеклетки выделяют из самок-доноров, у которых была индуцирована гиперовуляция и проведено спаривание с самцами. Трансгенную конструкцию инъецируют в мужской пронуклеус оплодотворенной яйцеклетки. Яйцеклетки имплантируют в «суррогатную» мать, которая производит на свет трансгенных мышат — основателей трансгенных линий.

У млекопитающих после проникновения сперматозоида в яйцеклетку ядро спермия (мужской пронуклеус) и ядро яйцеклетки существуют раздельно. После того как последнее заканчивает митотическое деление и становится женским пронуклеусом, может произойти слияние ядер (кариогамия). Мужской пронуклеус обычно гораздо больше женского, его легко локализовать с помощью секционного микроскопа и ввести в него чужеродную ДНК. При этом яйцеклетку на время проведения микроинъекции можно перемещать, ориентировать нужным образом и фиксировать. Опытный экспериментатор за день может инокулировать несколько сотен яйцеклеток.

После введения ДНК от 25 до 40 яйцеклеток имплантируют микрохирургическим путем в «суррогатную» мать, у которой вызывают ложную беременность скрещиванием с вазэктомированным самцом. У мышей спаривание — это единственный известный способ подготовки матки к имплантации. Поскольку вазэктомированный самец сперматозоидов не продуцирует, ни одна из яйцеклеток «суррогатной» матери не оплодотворяется. Эмбрионы развиваются только из введенных яйцеклеток, и мышата рождаются спустя примерно 3 нед после имплантации.

Для идентификации трансгенных животных выделяют ДНК из маленького кусочка хвоста и тестируют ее на наличие трансгена с помощью блот-гибридизации по Саузерну методом полимеразной цепной реакции (ПЦР). Чтобы определить, находится ли трансген в клетках зародышевой линии животного, трансгенную мышь скрещивают с другой мышью. Далее можно проводить скрещивание потомков для получения чистых (гомозиготных) трансгенных линий. Описанный подход кажется на первый взгляд относительно простым, однако он требует четкой координации разных этапов. Даже высококвалифицированному специалисту удается получить жизнеспособных трансгенных животных в лучшем случае лишь из 5% инокулированных яйцеклеток (рис. 19.3). Ни один из этапов эксперимента не эффективен на все 100%, поэтому для микроинъекций необходимо использовать большое число оплодотворенных яйцеклеток. Например, при получении трансгенных мышей после инъекции ДНК выживают только 66% оплодотворенных яйцеклеток; мышата развиваются примерно из 25% имплантированных яйцеклеток, причем трансгенными из них оказываются лишь 25%. Таким образом, из 1000 имплантированных оплодотворенных яйцеклеток развивается от 30 до 50 трансгенных мышат. Кроме того, введенная ДНК может интегрировать в любое место в геноме, и зачастую множество ее копий включаются в один сайт. И наконец, не все трансгенные мышата будут обладать нужными свойствами. В организме некоторых особей трансген может не экспрессироваться из-за неподходящего окружения сайта интеграции, а в организме других число копий чужеродного гена может оказаться слишком большим, что может привести к гиперпродукции белка и нарушению нормальных физиологических процессов. И все же, несмотря на все это, метод микроинъекций используют для получения линий мышей, несущих функциональные трансгены, довольно часто.

Рис. 19.3. Суммарная эффективность трансгеноза после микроинъекций. Все оплодотворенные яйцеклетки (100%) коровы, свиньи, овцы и мыши инокулировали трансгеном, однако успешная имплантация и появление потомства были редкими событиями: трансгенное потомство давали менее 5% обработанных яйцеклеток.

Использование модифицированных эмбриональных стволовых клеток

Клетки, выделенные из мышиных эмбрионов на стадии бластоцисты, могут пролиферировать в культуре, сохраняя способность к дифференцировке в любые типы клеток, в том числе и в клетки зародышевой линии, при введении в другой эмбрион на стадии бластоцисты. Такие клетки называются плюрипотентными эмбриональными стволовыми клетками (ES). ES-клетки в культуре легко модифицировать методами генной инженерии без нарушения их плюрипотентности. Например, в определенный сайт несущественного гена в их геноме можно встроить функциональный трансген. Затем можно отобрать измененные клетки, культивировать их и использовать для получения трансгенных животных (рис. 19.4). Это позволяет избежать случайного встраивания, характерного для метода микроинъекций и ретровирусных векторных систем.

При трансфекции ES-клеток в культуре вектором, предназначенным для интеграции в специфический хромосомный сайт, в некоторых клетках ДНК встраивается случайным образом, в других встраивание происходит в нужный сайт, в большинстве же ES-клеток интеграции вообще не происходит. Для увеличения числа клеток первого типа используют так называемую позитивно-негативную селекцию. Эта стратегия состоит в позитивной селекции клеток, несущих векторную ДНК, встроившуюся в нужный сайт, и негативной селекции клеток с векторной ДНК, интегрировавшей в случайный сайт.

Сайт-мишень должен находиться в такой области геномной ДНК, которая не кодирует важных белков, чтобы интеграция чужеродной ДНК не повлияла на процессы развития или клеточные функции. Кроме того, существенно, чтобы встраивание трансгена не блокировало трансляцию соответствующего участка генома. Поиск подобных сайтов ведется непрерывно. Вектор для позитивно-негативной селекции обычно содержит следующие элементы: I) два блока последовательностей (НВ1 и НВ2), гомологичных отдельным участкам сайта-мишени; 2) трансген (TG), кодирующий новую функцию реципиента; 3) последовательность, кодирующую устойчивость к соединению G-418 (Neor); 4) два разных гена тимидинкиназы (tk1 и tk2) вируса простого герпеса типов 1 и 2 (НSV-tk1 и HSV-tk2) (рис. 19.5, А). Ключевым для позитивно-негативной селекции является взаимное расположение этих элементов. Трансген и ген устойчивости к G-418 (Neor) должны находиться между двумя участками ДНК, гомологичными сайту-мишени, а гены HSV-tk1 и HSV-tk2 — по бокам этой конструкции. Если встраивание происходит в случайный сайт (не в НВ1 и НВ2), то с высокой вероятностью вместе с другими последовательностями интегрируют один или оба гена HSV-tk (рис. 19.5, А). Напротив, если интеграция происходит в результате гомологичной рекомбинации путем двойного кроссинговера в нужный сайт, то в геном встроятся только трансген и ген Neor, а гены HSV-tk — нет (рис. 19.5, Б). При выращивании трансфицированных клеток в присутствии G-418 клетки, не несущие ген Neor, расти не будут. Выживут только клетки, в которых произошла интеграция — иными словами, осуществляется позитивная селекция. Если одновременно с G-418 в среду добавить ганцикловир, то рост клеток, синтезирующих тимидинкиназу, будет подавлен, поскольку этот фермент катализирует превращение ганцикловира в токсичное соединение, летальное для клетки, т. е. произойдет негативная селекция. Клетки, прошедшие через такое двойное сито, скорее всего будут содержать последовательность, встроившуюся в нужный сайт. Хоть этот метод не застрахован от ошибок, он позволяет обогатить клеточную популяцию клетками, несущими трансген в специфичном хромосомном сайте.

Рис. 19.4. Получение трансгенных мышей с помощью генетической модификации эмбриональных стволовых (ES) клеток. ES-клетки получают из внутренней клеточной массы бластоцисты мыши. Их трансфицируют вектором, несущим трансген, культивируют и идентифицируют трансфицированные клетки методом позитивно-негативной селекции или ПЦР. Популяцию трансфицированных клеток вновь культивируют и вводят в бластоцисты, которые затем имплантируют в матку «суррогатных» матерей. Скрещивая животных-основателей, несущих трансген в клетках зародышевой линии, можно получить линии трансгенных мышей.

Рис. 19.5. Позитивно-негативная селекция. А. Неспецифическая интеграция. В хромосому встроились оба гена тимидинкиназы (tk1 и 1к2), два участка ДНК, гомологичные специфичным последовательностям хромосомной ДНК реципиентных клеток (НВ1 и НВ2), ген (Neor), обеспечивающий устойчивость к цитотоксическому соединению G-418, и трансген (TG). После трансфекции проводят тестирование клеток на устойчивость к G-418 и ганцикловиру, который становится цититоксичным для клеток, синтезирующих тимидинкиназу. Интеграция может произойти и по-другому, со встраиванием в хромосому только гена тимидинкиназы. В присутствии G-418 и ганцикловира все такие клетки тоже погибают. Б. Специфическая интеграция с помощью гомологичной рекомбинации. В результате двойного кроссинговера между гомологичными участками (НВ1 и НВ2) векторной и хромосомной ДНК в последнюю встраивается фрагмент, не содержащий генов тимидинкиназы (tk1 и tk2). В присутствии G-418 и ганцикловира выживают только клетки, в которых прошла гомологичная рекомбинация.

Более простой способ идентификации ES-клеток, несущих трансген в нужном сайте, основан на использовании ПЦР. В этом случае ДНК-вектор содержит два участка, гомологичных сайту-мишени, по одному со стороны трансгена и со стороны клонированной бактериальной или синтетической (уникальной) последовательности, отсутствующей в геноме мыши (рис. 19.6). После трансфекции ES-клеток этим вектором проводят скрининг трансфицированных клеток методом ПЦР. Один из ПЦР-праймеров (Р1) комплементарен участку клонированной бактериальной или синтетической (уникальной) нуклеотидной последовательности интегрировавшего вектора, а второй (Р2) — участку хромосомной ДНК, прилегающему к одному из гомологичных участков ДНК. При встраивании последовательности-мишени в случайный сайт ожидаемый продукт амплификации образовываться не будет (рис. 19.6, А), а при сайт-специфической интеграции в результате ПЦР-амплификации образуется фрагмент ДНК известного размера (рис. 19.6, Б). Таким образом можно идентифицировать пулы ES-клеток, содержащих трансген в нужном сайте, а пересевая клетки из этих пулов — получить клеточные линии с сайт-специфической вставкой.

Рис. 19.6. Идентификация клеток, несущих трансген в специфическом сайте, при помощи ПЦР. А. В результате неспецифического встраивания векторной ДНК один из праймеров (Р2) не сможет гибридизоваться с участком хромосомы, находящимся на определенном расстоянии от места отжига праймера Р1, и фрагмента нужного размера при амплификации не образуется. Р1 гибридизуется с уникальным участком (US) встроенной ДНК, отсутствующим в хромосомной ДНК клетки-реципиента. Б. В результате гомологичной рекомбинации между участками НВ1 и НВ2 встраиваемой ДНК, с одной стороны, и комплементарными участками хромосомы CS1 и CS2, с другой, образуются участки, с которыми могут гибридизоваться оба праймера, Р1 и Р2, и которые находятся на определенном расстоянии друг от друга. В ходе ПЦР-амплификации синтезируются фрагменты одного размера, которые можно идентифицировать при помощи гель-электрофореза. Если ПЦР-продукт нужной длины образовался, значит трансген (TG), находящийся между гомологичными участками (НВ1 и НВ2), встроился в определенный сайт хромосомы.

ES-клетки, в геном которых в нужном сайте встроен трансген, можно культивировать и ввести в эмбрион на стадии бластоцисты, а затем имплантировать такие эмбрионы в матку псевдобеременных «суррогатных» матерей. Мышата, у которых генетически модифицированные ES-клетки участвовали в образовании клеток зародышевой линии, могут дать начало трансгенным линиям. Для этого их нужно скрестить с особями той же линии, а затем скрестить их трансгенных потомков. В результате будут получены трансгенные мыши, гомозиготные по трансгену.

В специфический хромосомный сайт ES- клеток можно не только встроить трансген, кодирующий какую-то новую функцию, но и направленно разрушить этот сайт интеграцией с его кодирующей областью специфической последовательности (обычно селективного маркерного гена) (рис. 19.7). Одна из задач направленного нарушения («нокаута») гена состоит в исследовании влияния этого процесса на развитие организма и протекающие в нем физиологические процессы. Кроме того, есть надежда, что трансгенных животных с нарушением в определенном гене можно использовать как модель для изучения болезней человека на молекулярном уровне.

Например, направленный «нокаут» гена родопсина мыши приводит к инактивации палочек сетчатки, что имитирует такую болезнь человека, как пигментный ретинит. На мышах с «нокаутированным» геном родопсина можно изучать процесс дегенерации сетчатки, а также терапевтический эффект лекарственных средств, замедляющих или вообще останавливающих генетически обусловленный патологический процесс. Уже создано более 250 линий мышей с «нокаутированными» генами, использующихся в качестве моделей для изучения различных заболеваний человека.

Рис. 19.7. «Нокаут» гена с помощью направленной гомологичной рекомбинации. Вектор несет селективный маркерный ген (smg) и фланкирующие его последовательности, гомологичные соответствующим участкам гена-мишени. Последний содержит пять экзонов (1 —5). В результате гомологичной рекомбинации (штриховые линии) ген-мишень прерывается («нокаутируется»).

В принципе подходы к созданию трансгенных животных с «улучшенными функциями» и с «потерей функций» сходны. К сожалению, плюрипотентные ES-клетки, аналогичные таковым у мышей, пока не обнаружены у крупного рогатого скота, овец, свиней и цыплят, но их поиск продолжается.

Клонирование с помощью переноса ядра

Плюрипотентность можно выявить, если перенести ядро тестируемой клетки в яйцеклетку с удаленным ядром и затем исследовать способность последней к развитию и образованию жизнеспособного потомства. В нескольких лабораториях с переменным успехом исследовали плюрипотентность линий эмбриональных клеток, клеток плода и взрослой особи. Было показано, что ядра эмбриональных клеток способны — хотя и с низкой эффективностью — обеспечивать развитие. Например, с помощью переноса ядер эмбриональных клеток крупного рогатого скота, культивированных непродолжительное время, были получены жизнеспособные особи. Всем известная овца по имени Долли была клонирована с помощью переноса ядра клетки молочной железы (вымени) взрослого животного (рис. 19.8). Так впервые была доказана плюрипотентность ядра дифференцированной взрослой клетки. Впрочем, нельзя исключить, что на самом деле донорское ядро было взято из недифференцированной клетки, присутствовавшей в эпителии молочной железы организма-донора.

Клонирование Долли из ядра дифференцированной клетки и трех других овец из ядер эмбриональных клеток удалось осуществить благодаря переносу ядер из клеток, находящихся в стадии покоя (G0), и, возможно, особенностям эмбриогенеза этого животного. Дело в том, что в течение первых трех делений зиготы овцы, занимающих несколько суток, происходит только репликация ДНК, ни один из генов не экспрессируется. Предполагается, что за это время введенная ДНК освобождается от специфичных для клетки регуляторных белков, а соответствующие гены эмбрионального развития связываются с инициаторными эмбриональными белковыми факторами из цитоплазмы яйцеклетки.

Основная проблема, которую нужно решить для того, чтобы создание трансгенных животных с помощью метода переноса ядер стало реальным, — это сохранение плюрипотентности клеток в непрерывной культуре. Если это удастся, то генетическое изменение таких клеток и создание трансгенных организмов станет почти рутинной процедурой. Однако вследствие видовых различий во времени процесса деления клетки на ранних стадиях эмбриогенеза и инициации транскрипции в этот период пока не ясно, удастся ли осуществить перенос ядра в случае каких-либо других домашних животных, кроме овец, если донорское ядро будет находится на той же стадии, что и яйцеклетка.

Рис. 19.8. Клонирование овцы методом переноса ядра. Ядро яйцеклетки удаляют с помощью микропипетки. Культивируют эпителиальные клетки молочной железы взрослой особи и индуцируют их переход в фазу G0. Осуществляют слияние клеток в Go-фазе и яйцеклеток, лишенных ядра, и выращивают восстановленные яйцеклетки в культуре или в яйцеводе с наложенной лигатурой до ранних стадий эмбриогенеза, а затем имплантируют их в матку «суррогатной» матери, где и происходит дальнейшее развитие. В эксперименте, описанном Уилмутом и др. (Wilmut et al., 1997), было проведено слияние 277 яйцеклеток с удаленными ядрами с клетками молочной железы в фазе Go; из 29 эмбрионов только один развился до жизнеспособного плода.

Перенос генов с помощью искусственных дрожжевых хромосом

Большинство трансгенов представляют собой кДНК, небольшие гены (<20 т. п. н.) или фрагменты генов. Зачастую кДНК плохо экспрессируются в клетках млекопитающих, а когда трансгеном служит геномная ДНК, важные геноспецифичные регуляторные последовательности, расположенные до и после гена-мишени, обычно не входят в состав вставки. Кроме того, полноразмерные гены и мультигенные комплексы (>100 т. п. н.) слишком велики для встраивания в обычные векторы. Учитывая все это, для трансгеноза стали использовать искусственные дрожжевые хромосомы (YAC), вмещающие фрагменты геномной ДНК длиной от 100 до >1000 т. п. н.

Трансгенных мышей получали микроинъекцией в пронуклеус оплодотворенной яйцеклетки или трансфекцией ES-клеток с помощью YAC, несущих несколько родственных генов или один большой ген. Трансгенные мыши, несущие кластер из пяти функциональных генов ß-глобина человека суммарной длиной примерно 250 т. п. н., экспрессировали все эти гены тканеспецифично и в нужное время — точно так же, как это происходит у человека. Такое соответствие обеспечивалось фланкирующими их последовательностями, которые содержат промотор и другие важные регуляторные элементы.

Создание мышей, которые синтезировали бы только человеческие антитела, — это примечательный пример трансгеноза с помощью YAC. Как отмечалось в гл. 10, моноклональные антитела можно использовать для лечения некоторых заболеваний человека. Однако получить человеческие моноклональные антитела практически невозможно. К сожалению, и моноклональные антитела грызунов иммуногенны для человека. Чтобы «очеловечить» существующие моноклональные антитела грызунов, были разработаны сложные стратегии с использованием рекомбинантных ДНК. В результате этих трудоемких процедур удалось получить Fv- и Fab-фрагменты, зачастую обладающие каким-то сродством к специфическому антигену. Возможно, технологического прорыва удастся достичь, если использовать для получения полноразмерных человеческих антител более доступный метод с использованием гибридом.

Синтез природных антител — это настоящее чудо. Антитело — очень сложная тетрамерная конструкция, состоящая из двух пар разных цепей. Одна из них называется тяжелой (Н), а другая — легкой (к или к). Эти термины отражают различия в молекулярных массах субъединиц антитела. Генетические особенности каждой тяжелой цепи определяются комбинацией вариабельного (VH), дивергентного (DH), шарнирного (JH) и константного (СH) участков (доменов) соматической ДНК в В-клетке. Известны два типа легких цепей, λ и κ, которые образуются в результате перестройки их собственных вариабельных (Vλ, Vκ), шарнирных (Jλ, Jκ) и константных (О., Ск) доменов. Данная В-клетка синтезирует один вид антител, с уникальной комбинацией участков, составляющих Н-цепь, и либо перестроенной λ-, либо κ-цепью.

Набор генетических элементов, обеспечивающих образование множества разных Н-цепей антител человека, включает около 95 VH-доменов, 30DH-доменов, 6 JH-домeнов и 5 основных константных (Са, Су, Сδ, Сε, Сμ) доменов. Локус κ-генов содержит примерно 76 Vκ-домєнов, 5 Jκ-домєнов и один константный (Ск) участок (рис. 19.9). Размер Н-локусов и к-генов — от 1 до 1,5 т. п. н. Для создания трансгенных мышей, способных синтезировать множество различных человеческих антител, необходимо инактивировать мышиные гены Н- и L-цепей, а затем встроить в хромосомную ДНК мыши YAC, содержащую гены Н- и L-цепей каждого человеческого гена иммуноглобулина.

Чтобы решить эту задачу, мышиные гены Н- и κ-цепей были заменены («нокаутированы») небольшим участком кластера генов Н-цепи человека (который включал 4 VH-домена, 16 DH- доменов, 6 JH-доменов, Су и Сμ) и кластера генов κ-цепи человека (содержащего 4 Vк-домена, 5 Jκ-домєнов и Сκ). Трансгенные мыши с таким набором генов антител человека синтезировали человеческие антитела к некоторым антигенам; кроме того, были созданы гибридомы, продуцирующие человеческие моноклональные антитела. Однако разнообразие человеческих антител, продуцируемых такими трансгенными мышами, было невелико вследствие ограниченности набора вариабельных сегментов Н- и к-цепей. Чтобы решить эту проблему, создали YAC с большим числом генов вариабельных участков Н- и к-цепей гемоглобина человека.

Объединив четыре разные YAC с генами Н-цепей гемоглобина человека, создали YAC длиной 1000 т. п. н., несущую 66 VH-доменов, около 30 DH-сегментов, 6 JH-доменов, Сμ, Cδ, и Су. Аналогично, из трех YAC, несущих различные домены Vκ, создали YAC длиной 800 т. п. н. с 32 Vк-доменами, 5 Jκ-доменами и Сκ. ES-клетки трансфицировали по отдельности YAC с генами Н- и κ- цепей методом слияния клеток, отобрали клетки, в которых произошла интеграция YAC, с помощью селективного маркера и проверили целостность каждой вставки методом ПЦР. Инъецировали клетки, несущие встроенные гены Н- либо к-цепи, в бластоцисты и идентифицировали особь-основателя с помощью ПЦР. Трансгенных мышей со вставками генов Н- и κ-цепей скрещивали по отдельности с мышами с инактивированными локусами этих цепей. Затем потомство скрещивали между собой, чтобы получить мышей, лишенных функциональных мышиных генов Н- и κ-цепей, но несущих обе вставки генов Н- и κ-цепей гемоглобина человека.

Трансгенные мыши с увеличенным числом человеческих VH- и Vκ-доменов синтезировали человеческие антитела. Их иммунизировали тремя разными антигенами, и в каждом случае гибридомы секретировали человеческие моноклональные антитела, обладающие высоким сродством к антигену, которым животные были иммунизированы. Весьма вероятно, что с помощью такой трансгенной системы удастся получать человеческие моноклональные антитела для использования их в медицине.

Рис. 19.9. Схематичное изображение генов к- и Н-цепей иммуноглобулинов человека. А. Строение гена к-цепи иммуноглобулина в клетках зародышевой линии. Штриховая линия — промежуточные домены, здесь не показанные. Ген функциональной к-цепи, например Vk8-Jk4-Ck, образуется в В-клетках в результате нескольких перестроек соответствующих ДНК-доменов. Представленная здесь комбинация — лишь одна из 500 возможных. Б. Строение гена Н-цепи иммуноглобулина в клетках зародышевой линии. Штриховая линия — промежуточные домены, здесь не показанные. Ген функциональной Н-цепи, например VH33-DH26-JH4-Ca, образуется в В-клетках в результате ряда перестроек соответствующих доменов. Представленная здесь комбинация — лишь одна из 140 000 возможных. На рисунке показан только один Су-домен, хотя на самом деле их четыре (Су1, Су2а, Су2b и Су3).







Для любых предложений по сайту: [email protected]