Молекулярная биотехнология. Принципы и применение - Глик Б., Пастернак Дж. 2002
Молекулярная биотехнология микробиологических систем
Промышленный синтез белков при участии рекомбинантных микроорганизмов
Разрушение клеток
Для разрушения клеток используют разнообразные химические, биологические и физические методы. Все процедуры должны быть достаточно жесткими, чтобы разрушить клеточную стенку, и в тоже время достаточно мягкими, чтобы исключить денатурацию белка. А поскольку клеточные стенки у разных микроорганизмов состоят из разных полимеров, никакого универсального метода их разрушения не существует.
✵ У грам положительных бактерий клеточная стенка состоит из толстого пептидогликанового слоя N-ацетилглюкозамина и остатков N-ацетилмурамовой кислоты, соединенных пептидными мостиками.
✵ У грамотрицательных бактерий клеточная стенка тоньше и покрыта снаружи слоем липидов.
✵ Стенка дрожжевых клеток состоит из плотного слоя частично фосфорилированных маннанов и ß-глюканов.
✵ Низшие грибы имеют многослойные клеточные стенки, состоящие из а- и ß-глюканов, гликопротеидов и хитина.
Состав и прочность клеточной стенки зависят от условий культивирования, скорости роста клеток, фазы, на которой они собираются, условий хранения сконцентрированных клеток и от того, экспрессировал ли выделенный микроорганизм клонированный ген.
Химические методы разрушения клеточных стенок включают обработку щелочью, органическими растворителями или детергентами. Если белковый продукт не разрушается при рH от 10,5 до 12,5, то можно без труда и дешево лизировать большие количества бактериальных клеток. Например, рекомбинантный гормон роста человека очень просто выделить из клеток Е. coli обработкой гидроксидом натрия при pH 11. После обработки щелочью не остается практически ни одной жизнеспособной клетки, что автоматически решает проблему утечки рекомбинантных микроорганизмов. Обработка органическими растворителями — это простой и недорогой способ разрушения клеток, который используется для выделения ферментов из дрожжей. Однако, чтобы убедиться в том, что в подобранных условиях белковый продую, не денатурирует, необходимо провести предварительное тестирование. Под действием детергентов в мембранах бактериальных клеток образуются поры, через которые белки и другие молекулы выходят из клетки. К сожалению, детергенты дороги, в большинстве случаев в их присутствии белки денатурируют, а кроме того, они могут загрязнять конечный продукт.
Основным биологическим методом разрушения клеток микроорганизмов является лизис с помощью ферментов. Так, лизоцим яичного белка легко гидролизует клеточные стенки грамположительных бактерий. Для разрушения клеточных стенок грамотрицательных бактерий используют лизоцим и этилендиаминтетрауксусную кислоту (ЭДТА), а клеточные стенки дрожжей гидролизуют с помощью одного или нескольких ферментов: ß-1,3-глюканазы, ß-1,6- глюканазы, манназы и хитиназы. Ферментативная обработка высокоспецифична, а лизис проходит в мягких условиях. Пока использование ферментов для лизиса клеток сдерживается их высокой стоимостью, но с применением рекомбинантных микроорганизмов для промышленного синтеза ферментов, разрушающих клеточные стенки, эта проблема будет решена.
Клетки можно разрушить и физическими методами: немеханическими (например, с помощью осмотического шока или быстрого многократного замораживания и оттаивания) или механическими (обработкой ультразвуком, с помощью шаровой мельницы, гомогенизации под давлением, соударения). Обычно после обработки немеханическими методами многие клетки остаются неповрежденными. Напротив, механическое разрушение высокоэффективно, что делает его более привлекательным. Особенно часто ультразвуковые излучатели, генерирующие высокочастотные звуковые волны, используют для обработки малых объемов. Клетки разрушаются при этом под действием гидродинамических сил (сдвига слоев жидкости друг относительно друга, кавитации и т. д.).
Для разрушения большого количества клеток обычно используют шаровые мельницы. Концентрированную клеточную суспензию заливают в камеру высокоскоростной шаровой мельницы, заполненную инертным абразивным материалом (например, стеклянными шариками диаметром <1 мм). Содержимое быстро перемешивают с помощью лопастей, насаженных на ось. Большинство клеток разрушается под действием сдвиговых напряжений, возникающих в результате быстрого движения шариков. Условия оптимального разрушения клеток можно подобрать, варьируя число и форму лопастей, скорость перемешивания, размер шариков, их число, концентрацию клеток, геометрию камеры и температуру. Приборы такого типа успешно использовались для разрушения клеток самых разных микроорганизмов. С их помощью можно легко разрушать клетки как нерекомбинантных, так и рекомбинантных микроорганизмов.
При гомогенизации под высоким давлением концентрированную клеточную суспензию продавливают через небольшое отверстие под высоким давлением, а затем давление резко сбрасывают, что и вызывает лизис. Условия обработки можно оптимизировать применительно к разным микроорганизмам. Для этого изменяют рабочее давление, размер и форму отверстия, температуру клеточной суспензии, число продавливаний.
Еще один механический метод разрушения клеток — соударение. Клеточную суспензию большой вязкости направляют под давлением на неподвижную поверхность или навстречу потоку другой суспензии. В месте соприкосновения выделяется большое количество энергии, разрушающей клетки. Таким способом с помощью устройства под названием Microfluidizer за один прием была разрушена большая часть клеток Е. coli в двух встречных потоках суспензии. Однако для разрушения клеток других микроорганизмов может понадобиться большее число раундов. В отличие от гомогенизаторов под высоким давлением и высокоскоростных шаровых мельниц, в которых, как правило, используются концентрированные клеточные суспензии, данное устройство пригодно для обработки любых суспензий. Как показали предварительные исследования, активность клеточных белков уменьшается при разрушении клеток по этой методике лишь незначительно. А если обработать суспензию клеток небольшим количеством лизоцима, а затем использовать устройство Microfluidizer в режиме пониженного по сравнению с обычным давления и при небольшой вязкости, то сохранится активность некоторых лабильных белков, инактивирующихся при высоком давлении.