ГЕНЕТИКА - Підручник - А.В. Сиволоб - 2008

РОЗДІЛ 2. Експресія генів

ЕКСПРЕСІЯ ГЕНІВ У ПРОКАРІОТІВ

Регуляція транскрипції

Зрозуміло, що гени не транскрибуються постійно, а вмикаються / вимикаються в певні моменти залежно від зовнішніх умов, стадій клітинного циклу тощо. Головними елементами, взаємодія між якими зумовлює активацію чи репресію транскрипції, є цис- і транс-елементи. Дис-елементи - це регуляторні елементи послідовності ДНК, які фізично зв'язані з даним геном; у прокаріотів часто називаються операторами і перебувають у безпосередній близькості до промоторів. Транс- елементи - білкові фактори транскрипції, які вільно дифундують (транспортуються) у просторі клітини, шукаючи свій цис-елемент, до якого вони мають специфічну спорідненість. Якщо зв'язування транс-елемента з оператором приводить до активації транскрипції (часто за рахунок прямих білок-білкових взаємодій транскрипційного фактора з РНК-полімеразою, які підвищують її спорідненість до промотора), кажуть, що фактор є активатором і здійснює позитивну регуляцію. Якщо фактор блокує зв'язування РНК-полімерази (часто за рахунок зниження доступності промотора), його називають репресором і йдеться про негативну регуляцію.

Ці загальні принципи регуляції, які, ускладнюючись, зберігаються також в еукаріотів, реалізуються на стадії ініціації. Крім того, для регуляції використовуються інші моменти процесу транскрипції. Зокрема, для регуляції певних генів застосовується механізм антитермінації, коли активатори транскрипції запобігають упізнанню РНК-полі- меразою сигналів термінації, що містяться всередині кодуючої частини гена. Якщо фактори відсутні, ген неактивний: наявність термінуючого сигналу зумовлює термінацію транскрипції та визволення не- функціонального РНК-продукту.

Суттєвою особливістю прокаріотичного геному є те, що хоча приблизно 3/4 транскрипційних одиниць (скажімо, E. coli) містять один ген, решта реалізує характерний для бактерій оперонний принцип організації генетичного матеріалу. Оперон являє собою кластер так званих структурних генів, на яких синтезується одна молекула мРНК, що має кілька (одна на кожен структурний ген) послідовних відкритих рамок зчитування для трансляції відповідних білків. У межах оперона згруповані структурні гени, які відповідають за синтез білків, залучених до одного ланцюжка біохімічних перетворень (ферменти синтезу або деградації певної сполуки). Крім структурних генів оперон має регуляторні ділянки, за рахунок яких здійснюється регуляція транскрипції оперона як цілого. У геномі E. coli міститься ~650 таких одиниць транскрипції.

Наступні два приклади ілюструють найтиповіші механізми регуляції транскрипції у прокаріотичних системах.

Лактозний оперон (lac-оперон) E. coli став свого часу, завдяки дослідженням Жакоба і Моно (Francois Jacob, Jacques Monod), першою детально вивченою системою регуляції транскрипції. До складу оперона (рис. 2.8) входять три структурні гени, що кодують ферменти, залучені до утилізації (катаболізму) лактози. Транскрипція всіх трьох генів здійснюється з одного промотора (синтезується єдина поліцистронна молекула мРНК, яка має три послідовні відкриті рамки зчитування). Промотор оточують дві однакові операторні ділянки (lac-оператори), що мають спорідненість до lac-репресора, і сайт зв'язування CAP (Catabolite Activator Protein).

Рис. 2.8. Позитивна регуляція lac-оперона катаболітним активаторним білком САР

Промотор lac-оперона слабкий - у нього досить низька власна спорідненість до РНК-полімерази. Навіть якщо в середовищі є лактоза, але присутня також глюкоза (кращий харчовий субстрат для бактерій), транскрипція lac-оперона майже не здійснюється. Зниження рівня глюкози приводить до підвищення внутрішньоклітинної концентрації сАМР (циклічного аденозинмонофосфату), зв'язування якого з САР індукує конформаційну перебудову білка та появу його специфічної спорідненості до відповідного сайта на ДНК (див. структуру комплексу на рис. 1.7, в). Взаємодія САР із РНК-полімеразою підсилює 'її спорідненість до промотора - САР рекрутує полімеразу, яка далі розпочинає синтез мРНК (рис. 2.8).

Описаний сценарій позитивної регуляції реалізується лише за умови, що lac-оператори не взаємодіють із lac-репресором. У разі відсутності лактози (коли відповідні ферменти 'її утилізації напевно не потрібні) гомодимери репресора (незалежно від можливої присутності САР) зв'язуються з обома операторами й при цьому взаємодіють між собою: утворюється тетрамерний комплекс, який утримує петлю ДНК (рис. 2.9). Усередині петлі міститься промотор, і це абсолютно запобігає зв'язуванню з ним РНК-полімерази. Коли з'являється лактоза, 'її невелика кількість перетворюється на алолактозу, яка спрацьовує як індуктор lac-оперона: зв'язування алолактози з репресором індукує

структурні зміни білка та втрату його спорідненості до оператора. Унаслідок руйнування петлі РНК-полімераза зв'язується з промотором і оперон починає працювати.

Рис. 2.9. Негативна регуляція lac-оперона lac-репресором

Атенюація. Система атенюації (attenuation - послаблення), яка використовується зокрема для регуляції активності триптофанового оперона (trp-оперона) E. coli, пов'язана із використанням сигналів термі- нації та тієї обставини, що прокаріотична транскрипція тісно узгоджена з трансляцією. Триптофановий оперон містить п'ять структурних генів, які відповідають за синтез амінокислоти Trp, перед ними розташовані промотор, оператор і лідерна послідовність, з якої розпочинається транскрипція (рис. 2.10, а).

Рис. 2.10. (а): Схема trp-оперона, на якому синтезуються два РНК-продукти залежно від внутрішньоклітинної концентрації Trp. (б): Лідерна РНК і два варіанти спарювання основ у її складі залежно від розташування рибосоми

Лідерна частина РНК містить стартовий кодон, що розпізнається рибосомою, і чотири елементи послідовності: ділянка 1 містить два послідовні триптофанові кодони, ділянки 2-3 та 3-4 є попарно взаємо- комплементарними, за ділянкою 4 розташована оліго-U послідовність. Шпилька 3-4, фланкована оліго-U, є, таким чином, сигналом термі- нації транскрипції. Коли концентрація Trp низька (є потреба у Trp і тому оперон має бути активним), рибосома зупиняється на триптофанових кодонах ділянки 1 (оскільки відсутня і Trp-тРНК). У цьому випадку утворюється шпилька 2-3 (ділянка 3 не залучається до утворення термінуючої шпильки) і РНК-полімераза продовжує синтез повноцінної мРНК. Рибосоми зв'язуються зі стартовими кодонами, що відповідають структурним генам, і синтезуються відповідні білки.

За високого рівня Trp рибосома швидко проходить через ділянку 1 на ділянку 2 і зупиняється на стоп-кодоні. У результаті утворюється шпилька 3-4, тобто формується сигнал термінації, і РНК-полімераза зупиняє транскрипцію після синтезу короткої нефункціональної лідерної РНК.

trp-Оперон перебуває також під контролем trp-репресора. Регулятором спорідненості репресора до оператора є сам Trp: у комплексі з ним репресор набуває конформаційної форми, яка має високу спорідненість. Якщо концентрації Trp знижується - репресор дисоціює й ефективність ініціації транскрипції підвищується приблизно в 70 разів. Атенюація є додатковим, менш ефективним механізмом регуляції: у разі відсутності Trp ефективність транскрипції підвищується приблизно в 10 разів за рахунок атенюації (за наявності Trpблизько 10 % РНК-полімераз долають сигнал термінації й продовжують працювати, за відсутності Trp - практично всі). Таким чином, сумісна дія атенюації та негативного контролю за рахунок репресора дозволяє змінювати активність оперона майже в 700 разів залежно від внутрішньоклітинної концентрації Trp.





Для любых предложений по сайту: [email protected]