Введение в молекулярную биологию: От клеток к атомам - Энтони Рис, Майкл Стернберг 2002

Клетки и вирусы
Прокариотическая клетка

Рис. 2.1

Прокариотическая клетка — простейший тип живой клетки (рис. 2.1). К прокариотам относятся такие одноклеточные организмы, как бактерии и синезеленые водоросли. Определяющей особенностью прокариотической клетки является наличие прямого контакта между ее хромосомой и цитоплазмой. Хромосомы эукариотической клетки, напротив, заключены в мембранную структуру — ядро. От эукариотических клеток (гл. 3) прокариоты отличаются, кроме того, отсутствием митохондий и хлоропластов, меньшими размерами рибосом (их коэффициент седиментации 70S), а также весьма ограниченной — из-за наличия клеточной стенки - способностью выделять и поглощать крупные молекулы.

Хромосома в прокариотической клетке всего одна. Она представляет собой непрерывный кольцевой тяж двухцепочечной ДНК. Молекула ДНК может достигать длины около 1 мм (например, у бактерии Е. coif); в клетке она обычно туго скручена в компактную спиральную структуру (гл. 26). Существуют также внехромосомные ДНК-содержащие элементы — плазмиды. Это маленькие кольцевые структуры, несущие лишь по нескольку генов; некоторые из них могут кодировать такие ферменты, благодаря кото

рым клетка становится устойчивой к различным антибиотикам.

Плазматическая мембрана клетки состоит из липидов и белков (гл. 34). Она служит полупроницаемым барьером, контролирующим перенос малых молекул и ионов в клетку и из клетки. Мезосома представляет собой впячивание плазматической мембраны в цитоплазму. Она содержит многослойную мембранную систему, которая своей цитоплазматической стороной часто связана с ДНК. Считается, что мезосомы участвуют в клетке в двух разных процессах: они могут служить местом прикрепления ДНК (особенно во время репликации) и играть определенную роль в секреции.

Клеточная стенка расположена снаружи от плазматической мембраны и покрывает всю клетку. Она сообщает клетке жесткость, придает ей определенную форму, а также защищает ее от повреждения при осмотических и механических воздействиях. У бактерий клеточная стенка представляет собой жесткую сеть из липидов, полисахаридов и белков. В структурном отношении бактериальная клеточная стенка бывает в основном двух типов; в соответствии с этим бактерии разделяют на грамположительные и грамотрицательные (гл. 35). У синезеленых водорослей клеточная стенка построена из простых полисахаридов, таких как целлюлоза (гл. 31).

Желатиновый слой (гликокаликс) — самый наружный слой прокариотической клетки; чаще всего он встречается у синезеленых водорослей.

Жгутик — белковая органелла, отходящая от поверхности клетки в виде вытянутого отростка длиной от 1 до 20 мкм. С помощью жгутиков клетка перемещается в жидкой среде.

Рибосома (гл. 24) — сложная органелла, в которой осуществляется синтез белка. В связи с тем что бактерии размножаются с высокой скоростью, рибосомы могут составлять до 40% массы клетки. Рибосома — это комплекс молекул белков и РНК (рРНК), образующих почти сферическую частицу диаметром 20 нм. В рибосоме можно выделить две части — большую и малую субчастицы. Большая субчастица состоит из 34 разных белков, связанных с большой (23S) и малой (5S) молекулами рРНК. Малая субчастица содержит 21 белок и молекулу рРНК среднего размера (16S). Энергия для процессов биосинтеза в прокариотической клетке поступает из двух основных источников. Первый — это нуклеозидтрифосфат, АТР, который образуется в результате катализируемого группой ферментов гликолиза за счет энергии, содержащейся в молекулах такого рода питательных веществ, как гексозы (например, глюкозы; гл. 17). Энергия, запасенная в АТР, может затем использоваться множеством разных ферментов в анаболических (биосинтетических) процессах. Второй, самый важный источник энергии — это АТР, синтезируемый с помощью группы белков, расположенных рядом друг с другом в плазматической мембране и образующих так называемую цепь переноса электронов. Эта цепь, в конце которой происходит восстановление кислорода до воды, получает электроны от атомов водорода, продуцируемых в цикле Кребса при окислении кислотных субстратов. Образующиеся ионы Н+ «откачиваются» через бактериальную мембрану транспортными белками, в результате чего между вне- и внутриклеточным пространством возникает разность рН и электрического потенциала. Запасенная в таком электрохимическом градиенте свободная энергия используется для синтеза молекул АТР в расположенных в мембране так называемых F1 -частицах.

Фотосинтезирующие клетки, такие как синезеленые водоросли и фотосинтезирующие бактерии, производят энергию для метаболических процессов, поглощая энергию видимого света. У синезеленых водорослей фотосинтетические мембраны — ламеллы - содержат специальные пигменты, функция которых состоит в поглощении световой энергии и превращении ее в химическую для синтеза АТР. Поскольку прокариотические водоросли способны использовать диоксид углерода в качестве единственного источника углерода, т.е. могут «фиксировать» углерод, включая его в сложные молекулы, их называют автотрофами.

Фотосинтезирующие бактерии содержат специальные белки, например бактериородопсин (гл. 34), располагающиеся в плазматической мембране и реагирующие на свет созданием протонного градиента путем перекачивания ионов Н+ через мембрану в одном направлении. Энергия возникающего таким образом электрохимического градиента используется затем для обеспечения синтеза АТР. Эти бактерии отличаются, однако, от синезеленых водорослей тем, что они неспособны фиксировать СО2. Для осуществления биосинтеза они вынуждены извлекать углерод из уже существующих органических молекул, и по этой причине их называют гетеротрофами.

Транспорт малых молекул и ионов через плазматическую мембрану осуществляется особыми механизмами (гл. 38).

Эндоцитоз или поглощение белков и других макромолекул, находящихся в контакте с клеточной поверхностью, у прокариот происходит редко, однако у них возможен экзоцитоз.

Движение прокариот осуществляется с помощью жгутиков (гл. 39). Эти нитевидные отростки могут вращаться как по, так и против часовой стрелки. Вращением управляет сложное белковое образование, расположенное у основания жгутика. Отходящая от основания нить является полимером белка флагеллина. Клетка либо движется поступательно, либо как бы кувыркается на месте. У Е. coli имеется небольшое число жгутиков, расположенных на одном конце клетки; тип движения клетки определяется направлением вращения ее жгутиков.

Размножение прокариот происходит неполовым путем. Каждая прокариотическая клетка делится на две в результате процесса, называемого митозом (гл. 29); с дочерними клетками происходит то же самое, и т. д.

Рис. 2.2. Когда жгутики вращаются в направлении против часовой стрелки (если смотреть с их конца в сторону тела клетки), они остаются «в фазе» друг с другом, и клетка движется по прямой. Если же жгутики вращаются по часовой стрелке, координация между ними быстро теряется, и движение клетки становится кувыркательным.





Для любых предложений по сайту: [email protected]