ГЕНЕТИКА - Підручник - А.В. Сиволоб - 2008

РОЗДІЛ 9. Генетична інженерія і методи молекулярної генетики

АНАЛІЗ СТРУКТУРИ Й ЕКСПРЕСІЇ ГЕНІВ І ГЕНОМІВ

Клонований або ампліфікований фрагмент ДНК можна дослідити різними способами, але найбільш вичерпну інформацію дає встановлення нуклеотидної послідовності (sequence) фрагмента - секвенування.

На рис. 9.6 показано схему найпопулярнішого сьогодні методу Сангера (Frederick Sanger). До одноланцюгової ДНК-матриці додається радіоактивно мічений праймер, повний набір дезоксинуклеозидтрифосфатів (dNTP), ДНК-полімераза й невелика кількість дидезоксинук- леозидтрифосфату одного з чотирьох типів (наприклад, ddATP). Дидезоксинуклеотид відрізняється тим, що містить атом Н замість ОН-групи не тільки при 2'-, а також і при 3'-атомі пентози (див. рис. 1.1). Відповідно, включення такого нуклеотиду в ланцюг, що синтезується, зупинить подальше зростання ланцюга внаслідок відсутності 3' ОН-групи на його кінці. Оскільки ddATP присутній у невеликій кількості, така подія буде відбуватися в різних точках ланцюга - в усіх, де стоїть аденін напроти тиміну в складі матриці. Денатурація продуктів реакції дасть набір мічених одноланцюгових фрагментів від праймера до кінцевого аденіну, довжина цих фрагментів у нуклеотидах дасть порядковий номер аденіну в складі ланцюга.

Рис. 9.6. Секвенування ДНК за Сангером: схема синтезу ДНК у присутності дидезоксиАТР (ліворуч). Аналогічна процедура для інших трьох дидезоксинуклеотидів дає набір одноланцюгових фрагментів, що аналізуються за допомогою гель-електрофорезу в денатуруючих умовах (праворуч) - розподіл смуг дозволяє прочитати послідовність (праворуч внизу)

З метою визначення довжини фрагментів проводять гель-електро- форез одноланцюгової ДНК у денатуруючих умовах, на сусідні лунки геля наносять також продукти синтезу в присутності інших дидезок- синуклеотидів. Як показано на рис. 9.6, після електрофорезу та візуалізації смуг із такого геля можна прочитати нуклеотидну послідовність.

Інший сучасний підхід у секвенуванні (так зване піросеквенування), який реалізується на автоматизованих секвенаторах, дозволяє встановити послідовність значно швидше, дешевше й при цьому не потребує ані клонування ДНК, ані електрофорезу. Одноланцюгові фрагменти, отримані з невеликої кількості геномної ДНК, пришиваються своїми 5'-кінцями до мікрокульок (один фрагмент на кульку) і піддаються ампліфікації за допомогою ПЛР. Кожна кулька з пришитими до неї ампліфікованими ідентичними фрагментами розміщується в мікрореакторі, де здійснюється ДНК-полімеразна реакція. Нуклеозидтрифосфати подаються в реакційну суміш імпульсно один за одним. Якщо нуклеотид певного типу виявляється комплементарним матриці та включається у зростаючий ланцюг, пірофосфат, що при цьому звільняється, залучається до низки хімічних реакцій, де остання реакція супроводжується випромінюванням світла (хемілюмінесценція). Світловий сигнал фіксується оптичною системою, і послідовність таких сигналів читається як нуклеотидна послідовність. Реакція здійснюється паралельно у 200 тис. мікрореакторів (для 200 тис. фрагментів, які перекриваються), що дозволяє встановити послідовність приблизно 200 млн пар основ за 4,5 години.

Зрозуміло, що далеко не завжди є потреба у визначенні послідовності ДНК, із якою має справу дослідник. Потужним засобом аналізу складних сумішей ДНК щодо наявності там специфічних елементів послідовності є блот-гібридизація на нітроцелюлозних фільтрах за Саузерном (Edward Southern). Назва процедури, яку схематично зображено на рис. 9.7, походить від слова blotting (промацування): фрагменти ДНК розділюються за допомогою гель-електрофорезу (залишаючись невидимими в гелі), після чого на гель накладають нітроцелюлозний фільтр, а під та над цим "сендвічем" розміщують фільтрувальний папір і занурюють нижній шар паперу в лужний розчин. Під дією капілярних сил розчин піднімається до верхнього шару паперу, "захоплюючи» при цьому ДНК і переносячи її з гелю на нітроцелюлозу. Одночасно при цьому ДНК денатурується лугом. У результаті одноланцюгова ДНК опиняється на фільтрі - середовищі, придатному для подальшої гібридизації, а сам фільтр є точною реплікою вихідного гелю. Далі проводять обробку фільтра зондом - одноланцюговим фрагментом ДНК певної послідовності, який містить радіоактивну мітку. Зонд гібридизується з комплементарною ДНК у певних досі невидимих смугах, що можна зафіксувати за допомогою авторадіографії.

Рис. 9.7. Блот-гібридизація

У такий спосіб можна встановити, наприклад, присутність специфічних послідовностей ДНК у препаратах; наявність у геномі додаткових копій послідовності, що є гомологічними до вже відомої; присутність у невивченому геномі генів, гомологічних відомим генам тощо. Прикладом одного з численних застосувань Саузерн-блотингу є метод фингерпринтингу ДНК (DNA fingerprinting). Метод базується на факті наявності в еукаріотичних геномах мінісателітних повторів - невеликих елементів послідовності, які тандемно повторюються в різних місцях геному кілька разів. Розподіл локусів за кількістю повторів є індивідуальним - так само, як відбитки пальців. З метою ідентифікації особини (чи особи - у криміналістиці, судових справах тощо) геномну ДНК обробляють рестриктазою, котра не має своїх сайтів усередині повтору. Фрагменти розділюються шляхом електрофорезу, здійснюється блотинг і гібридизація з радіоактивно міченим елементом послідовності мінісателіта. У результаті на авторадіограмі представлено специфічний для особини набір фрагментів різної довжини, тобто різної кількості повторів мінісателіта - своєрідний молекулярний відбиток (DNA fingerprint).

Нозерн-блотинг відрізняється від описаної процедури блотингу за Саузерном (назва nothern є просто жартівливою аналогією з буквальним значенням прізвища Саузерна) лише тим, що на гель для електрофорезу наноситься сумарний препарат виділеної мРНК. Гібридизація з міченим фрагментом ДНК (наприклад, кДНК із бібліотеки клонів) дозволяє встановити наявність певної мРНК, тобто активність гена, у клітинах певного типу після дії активуючих / репресуючих факторів тощо, а також оцінити рівень цієї активності (концентрацію мРНК) за інтенсивністю забарвлення смуги на авторадіограмі.

Проаналізувати повну програму активності генів організму чи клітин певного типу за певних фізіологічних умов або у процесі розвитку, а також виконувати інші завдання, пов'язані з вивченням функціонування цілого геному, дозволяють методи, що базуються на використанні ДНК-мікроареїв (DNA-microarrays) або ДНК- чіпів (DNA-microchips).

Фрагмент ДНК довжиною до 1 тис. пар основ, для якого відомо його розташування в геномі, ампліфікується, і одноланцюгові продукти ампліфікації пришиваються до невеликої зони на поверхні предметного скла мікроскопа. Скло розміром 2 х 2 см - ДНК-мікроарей - покрито сіткою із приблизно 6 тис. таких мікроплям, кожна з яких містить ДНК певної геномної ділянки.

Рис. 9.8. Аналіз сумарної мРНК за допомогою ДНК-мікроарея

Одну з типових схем використання мікроарея зображено на рис. 9.8. Сумарна мРНК, отримана з клітин певного типу, використовується як матриця в реакції зворотної транскрипції. Поряд зі звичайними, до реакційної суміші додається флуоресцентний аналог одного з NTP. У результаті маємо препарат флуоресцентно міченої кДНК. Після гібридизації з цією кДНК мікроарей аналізують за допомогою флуоресцентного мікроскопа: наявність флуоресцентної плями свідчить про активність певного гена, інтенсивність флуоресценції - про рівень цієї активності.

Експерименти такого типу дозволяють з'ясувати зміни загальної програми експресії генів при змінах зовнішніх умов, активність різних генів у різних тканинах багатоклітинного організму, зміни активності груп генів у процесі диференціювання клітин.





Для любых предложений по сайту: [email protected]